Active Preference Learning with Discrete Choice Data

نویسندگان

  • Eric Brochu
  • Nando de Freitas
  • Abhijeet Ghosh
چکیده

We propose an active learning algorithm that learns a continuous valuation model from discrete preferences. The algorithm automatically decides what items are best presented to an individual in order to find the item that they value highly in as few trials as possible, and exploits quirks of human psychology to minimize time and cognitive burden. To do this, our algorithm maximizes the expected improvement at each query without accurately modelling the entire valuation surface, which would be needlessly expensive. The problem is particularly difficult because the space of choices is infinite. We demonstrate the effectiveness of the new algorithm compared to related active learning methods. We also embed the algorithm within a decision making tool for assisting digital artists in rendering materials. The tool finds the best parameters while minimizing the number of queries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disentangling Preferences and Learning in Brand Choice Models

In recent years there has been a growing stream of literature in marketing and economics that models consumers as Bayesian learners. Such learning behavior is often embedded within a discrete choice framework which is then calibrated on scanner panel data. At the same time it is now accepted wisdom that disentangling preference heterogeneity and state dependence is critical in any attempt to un...

متن کامل

The First Discrete Choice Experiment On Usage of Bypassing Agents in Hemophilic Patients in Iran

Background: Bleeding events in hemophilic patients with inhibitors are managed by bypassing agents. Currently available agents in Iran are recombinant activated factor VII (rfVIIa; Aryogen, Aryoseven) and Feiba (factor eight inhibitor bypassing agent). No standardized and accurate assay is currently available for monitoring the effectiveness of bypassing agents. We suggested that history of the...

متن کامل

Predicting Airline Choices: A Decision Support Perspective and Alternative Approaches

The ability to predict the choices of prospective passengers allows airlines to alleviate the need for overbooking flights and subsequently bumping passengers, potentially leading to improved customer satisfaction. Past studies have typically focused on identifying the important factors that influence choice behaviors and applied discrete choice framework models to model passengers’ airline cho...

متن کامل

The Mixed Logit Model: The State of Practice

The mixed logit model is considered to be the most promising state of the art discrete choice model currently available. Increasingly researchers and practitioners are estimating mixed logit models of various degrees of sophistication with mixtures of revealed preference and stated preference data. It is timely to review progress in model estimation since the learning curve is steep and the unw...

متن کامل

Scalable Collaborative Bayesian Preference Learning

Learning about users’ utilities from preference, discrete choice or implicit feedback data is of integral importance in e-commerce, targeted advertising and web search. Due to the sparsity and diffuse nature of data, Bayesian approaches hold much promise, yet most prior work does not scale up to realistic data sizes. We shed light on why inference for such settings is computationally difficult ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007